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ABSTRACT

A motion gesture can be represented by a 3D spatial trajectory and
maybe augmented by additional 3 dimensions of orientation. De-
pending on the tracking technology in use, the 6D motion gesture
can be tracked explicitly with the position and orientation or implic-
itly with the acceleration and angular speed. In this work, we first
present a motion gesture database which contains both explicit and
implicit 6D motion information. This database allows us to com-
pare the recognition performance over different tracking signals on
a common ground. Our main contribution is to investigate the rel-
ative effectiveness of various feature dimensions in motion gesture
recognition. Using a simple and primitive recognizer, we evaluate
the recognition results of both explicit and implicit motion data. In
our experiments, both user dependent and user independent cases are
addressed. We also propose two general techniques to improve the
recognition accuracy: smoothing and the temporal extension. Our
pilot study produces benchmark results that give an insight into the
attainable recognition accuracy with different tracking devices.

Index Terms— Gesture Recognition, Motion Gesture, 6D Mo-
tion

1. INTRODUCTION

With the development of tracking technologies, motion-based con-
trol and motion gestures are gaining popularity and forming a
complementary modality in human-computer interactions beyond
the traditional devices. The control motion of conventional pointing
devices, such as mouse and trackpad, is limited to trajectories on a
plane, which also form the basis of many current motion gesture in-
terface devices. As these new interface modes are meant to support
truly natural human computer interactions, they must be designed
with 3D in mind. Motion information beyond a 2D trajectory, such
as depth and orientation, may provide additional insight into the
motion gesture, expand the “vocabulary” of gesture, and improve
the accuracy and robustness of gesture recognition. With the help
of tracking technologies, we are able to capture the hand motions
in space. Therefore, a motion gesture is represented by a 3D spatial
trajectory and maybe augmented by the additional three dimensions
of orientation, forming what we shall call a 6D motion gesture. In
this work, we focus on 6D motion gestures realized by a hand or a
handheld device.

There are several technologies for 6D motion tracking, each with
its own characteristics in terms of sampling rate, latency, resolution,
and accuracy. Among them, optical sensing and inertial sensing are
the most popular. The optical sensing usually tracks the explicit 6D
motion, i.e., the position and orientation in a global reference frame.

The inertial sensing actually measures the accelerations and angular
speeds in the device-wise coordinates, which depict the implicit 6D
motion. It is possible to infer the displacement in position and ori-
entation through integration, although not as accurate as the explicit
6D motion from optical tracking.

Depending on the tracking technology in use, the motion gesture
is represented in different dimensions of tracking results, including
the spatial trajectory with or without the three dimensions for ori-
entation. The spatial trajectory can be either 3D or its 2D projec-
tion, and the tracking results can be explicit or implicit as described
above. Motion gestures can be viewed as spatio-temporal patterns of
different dimensions, and the recognition is widely done with hidden
Markov models [1, 2, 3]. Other approaches for gesture recognition
include dynamic time warping [4], data-driven template matching
[5, 6], and feature-based statistical classifiers [7, 8]. The reported
recognition rates are above 90% in general. However, it is hard to
compare the performance because the results are obtained for differ-
ent datasets and in various experimental settings.

In this work, we first present a 6D motion gesture database
(6DMG) which contains both explicit and implicit 6D motion infor-
mation. We are interested in understanding which type of tracking
signals and resulting features help to describe the motion gesture.
6DMG makes it possible to compare the recognition performance
over different tracking signals on a common ground. Our main
contribution is to investigate the relative effectiveness of various
feature dimensions in motion gesture recognition. We use a simple
and primitive linear classifier to evaluate the resulting recognition
rates of both explicit and implicit motion data. Similar to the case
of speech recognition, it is desirable that the recognition system
accommodates user-specific adaptation or customization, but it is
also very important to achieve robust user-independent recognition.
Both user-dependent and user-independent cases are addressed. We
further show the gain in the recognition rate when including the tem-
poral characteristics of motion gestures. Our pilot study produces
benchmark results that give an insight into the attainable recognition
accuracy with different tracking devices.

The 6D motion gesture database is presented in the next section.
We describe the feature set extracted from different tracking signals
in Section 3. The experiments and results are shown in Section 4.
Finally, Section 5 concludes the paper.

2. 6DMG: 6D MOTION GESTURE DATABASE

We use a hybrid framework of optical and inertial sensing for mo-
tion tracking. Thus, the recorded data contain comprehensive spatio-
temporal information sampled at 60 Hz, including position, orienta-
tion, acceleration, and angular speed. We use WorldViz PPT-X4 as



Table 1: The gesture list of 6DMG

Duration (ms) Duration (ms)
Name Avg. (std.) Name Avg. (std.)

SwipeRight 866.2 (345.2) PokeUp 1206.4 (389.9)
SwipeLeft 861.1 (340.7) PokeDown 1183.6 (415.6)
SwipeUp 743.6 (258.7) Vshape 1193.5 (394.5)
SwipeDown 787.9 (277.8) Xshape 1655.2 (466.1)
SwipeUpright 754.5 (282.7) CirHorClk 1738.4 (449.2)
SwipeUpleft 748.9 (291.4) CirHorCclk 1719.9 (500.5)
SwipeDnright 777.1 (313.9) CirVerClk 1806.5 (549.3)
SwipeDnleft 792.4 (317.7) CirVerCclk 1707.7 (532.1)
PokeRight 1181.6 (383.3) TwistClk 1054.8 (315.5)
PokeLeft 1242.4 (418.4) TwistCclk 1075.9 (315.3)

(a) Swipe (b) Poke (c) Vshape

(d) Xshape (e) CirVer (f) CirHor

Fig. 1: Selected gestures in 6DMG

the optical tracking system and the Wii Remote Plus (Wiimote) as
the inertial measurement unit. The Wiimotes B button is used for
the push-to-gesture scheme so that the user explicitly segments the
uni-stroke motion gesture. We consider the imprecise segmentation
as part of the variation of the gesture data.

Swiping motions in eight directions as shown in Figure 1a are
viewed as the basic elements to form other complex gestures . We
also define a group of poke gestures that swipe rapidly forth and back
in four directions (see Figure 1b). Other commonly used motion ges-
tures such as circle, cross, v-shape (Figure 1c-1f), and roll are also
included. The names and durations of the 20 gestures are listed in
Table 1. There are no “mirror” gestures, which means the direction
and rotation are the same for both right and left handed users.

We recruited 28 participants (21 right-handed and 7 left-handed,
22 male and 6 female) for recording. Every tester was asked to re-
peat each distinct gesture for 10 times. There are in total 5600 ges-
ture samples in the 6DMG database. When recording, we did not
strictly constrain the gripping posture, the gesture articulation style
and the speed. Variations of the same gesture between individuals
are expected, and recording motion gestures from different users en-
sures the in-class variability of 6DMG. Table 1 shows the variation
in gesture articulation speeds. Space limitations preclude the imple-

mentation and recording details of 6DMG. The interested reader is
referred to our technical report1.

3. FEATURE EXTRACTION

3.1. The Baseline

Rubine’s feature set was originally designed for 2D trajectories using
the mouse or stylus [7]. With an underlying assumption to treat the
acceleration and angular speed data as position information in a 3D
space, Hoffman et al. [8] adapted Rubine’s feature set to the 3D
domain of the implicit 6D motion data.

Let [ax, ay, az] denote the accelerations and [wx, wy, wz] de-
note the angular speeds in yaw, pitch, and roll respectively. In Hoff-
man’s set, the first feature f1 is the gesture duration in milliseconds.
The following features f2−13 are the maximum, minimum, mean,
and median values of ax, ay , and az . f14−16 are the sine and co-
sine of the starting angle in the XY (vertical) plane and the sine
of the starting angle in the XZ (horizontal) plane. f17−19 are the
sine and cosine of the angle from the first to last point in the XY
plane and the sine of the angle from the first to last point in the XZ
plane. After that, f20−25 are the total angle traversed, the absolute
value and squared value of that angle in the XY and XZ planes re-
spectively. The last four features f26−29 for accelerations are the
diagonal length of the bounding volume, the Euclidean distance be-
tween the first and the last point, the total traveled distance, and the
maximum squared delta acceleration. The angular speeds introduce
another 12 features, f30−41: the maximum, minimum, mean, and
median values of wx, wy , and wz . For detailed implementation,
please refer to Rubine’s work [7].

3.2. Extension to Explicit 6D

Our database also provides explicit position and orientation data.
Note that the orientation is represented in quaternion, which can be
spherical linearly interpolated without gimbal lock. Although it is
easier to interpret or visualize Euler angles, an Euler representation
suffers from discontinuity when the angle wraps around, and it is
numerically less stable near a singularity.

Let [px, py, pz] denote the positions offset by the starting posi-
tion, and [qw, qx, qy, qz] denote the quaternion of the orientation. It
is very straightforward to extend the feature set above to real posi-
tion and orientation data. For f1−29, simply replace [ax, ay, az] with
[px, py, pz]. For the orientation part, we define f30−45 as the max-
imum, minimum, median, and mean values of qw, qx, qy , and qz .
Thus, 29 features are used to describe the motion gestures with only
positions, and 45 features are used when we include the orientation.

3.3. Smoothing

Compared to planar pointing devices, 3D input devices generally
have higher tracking noise, and are subject to hand tremor if held
in space. In our hybrid tracking framework, the raw readings from
the MEMS inertial sensors are even noisier than the measurements
from the optical tracking system. This could have mainly resulted
from the characteristics of the tracking hardware in use. In [3], the
accelerometer and gyroscope data of the hand motion from an Ana-
log Devices ADIS16364 Inertial Measurement Unit are comparably
smooth at 819.2 Hz. The minimum-jerk model also suggests that a
skilled motion is characterized by a decrease of jerk magnitude [9].

1The 6DMG database, technical report, and accompanying programs are
available at http://www.ece.gatech.edu/6DMG.



After a close look at the signals of our inertial sensors, we fig-
ure that the assumption of taking accelerations and angular speeds
as spatial trajectories is weak. The “trajectory” in the acceleration
space is very jerky and far from the geometric concept that Rubine’s
feature set is originally designed for. Therefore, the jitter will mess
up the angle-related features f14−25 and makes them less discrim-
inative. An intuitive remedy is to process the data with a running
average before feature extraction. Note that the smoothing is mainly
effective to angle-related features of accelerations. In implementa-
tion, we use a running average with a span of 5 points. At the signal
processing perspective, the smoothness in time domain suggests that
the energy distribution of human motions mainly concentrates in the
low frequency band. The time derivative operator actually boosts the
spectrum proportional to the frequency and magnifies the unwanted
parts. Taking the running average works as a low-pass filter to retain
the signature of the gesture.

3.4. Incorporating the Temporal Information

These statistical features in Hoffman’s set are either geometric or
algebraic. They treat the gesture as a static trajectory. The features
take no account of the ordering of angles in a trajectory and barely
contain any temporal information. Only f14−21 carry directional
information. Given a symmetric trajectory, swapping the start and
end points still forms the same path. In such circumstances, only the
directional features (f14−21) can be discriminative.

Currently our 3D tracking device produces noisier data than a
working 2D input device; as a result, the angle related features are
not particularly reliable. Gesture motions in space are also harder to
articulate precisely with a clean segmentation than those constrained
on a 2D plane. For example, early or late start of the push-to-gesture
scheme can mess up the starting angle. Overshoot can cause prob-
lems for the start-to-end angle. If the start and end of the input ges-
ture are not clearly delineated, the directional features become less
reliable.

After a few test runs using the linear classifier, we discov-
ered that Hoffman’s feature set leads to confusion between some
pairs of gestures like PokeRight and PokeLeft, PokeUp and
PokeDown, and CirHorClk and CirHorCclk. Apparently, the
time series properties of a motion gesture are crucial to discriminate
them. We introduce extra features to incorporate temporal informa-
tion into the modified feature set: the mean values of the first half,
second half, and the center one third of [ax, ay, az], the mean values
of the first half of [wx, wy, wz], and the mean values of the first and
second halves of [px, py, pz]. These features are able to describe the
motions in different time windows at a very coarse scale. The selec-
tion of temporal windows depends on how fine (or coarse) the scale
we need to distinguish the gesture. Taking time derivative usually
means that we need temporal features at a finer scale. Therefore, we
use more temporal features to describe accelerations than positions
and angular speeds than orientation. It also depends on how com-
plicated the gesture motions are defined. Our temporal features are
determined empirically. They are simple yet effective.

4. EXPERIMENT SETUP AND RESULTS

After converting a motion gesture g into a feature vector f , we use a
linear classifier for recognition. Associated with each gesture class
is a linear evaluation function over the features as follows,

vc = wc0 +
F∑
1

wcifi, 0 ≤ c < C

where F is the number of features, and C is the total number of
classes. The classification of g is the c that maximizes vc. Refer to
[7] for the details of training the weights wc. The threshold for rejec-
tion depends on the feature set in use and requires empirical tuning.
In our case, all the gesture samples are rendered intentionally with
labels. Thus, it’s reasonable not to consider the case of rejecting ges-
tures. We conducted experiments on both user dependent and user
independent cases. The relationship between right-handed and left-
handed gestures is also investigated. In every experiment, we eval-
uate the average error rate of the baseline as well as the cases with
smoothing and/or the temporal extension over implicit and explicit
motion data. All 20 gestures are used to evaluate the recognition per-
formance. We use the same initial seed to randomize the combina-
tion of selected training samples so that the results are reproducible
and comparable across different settings.

4.1. User Dependent Recognition

For the user dependent recognition experiment, we train the classifier
with 5 samples randomly drawn from each gesture of a single user,
and use the remaining 5 samples for testing. We repeat the experi-
ment for each of the 21 right-handed users. The results are shown in
Figure 2 Exp 1. The baseline with only the acceleration feature has
the highest mean error rate, 3.92%. The lowest mean error rates for
implicit and explicit 6D data are 1.20% and 0.41% respectively. We
show that a high level of accuracy is attainable with only 5 training
samples per gesture for a specific user.

4.2. User Independent Recognition

We randomly select five right-handed users, and train the classifier
with their gesture data. We then perform recognition on the ges-
tures of the remaining 16 right-handed users and 7 left-handed users
respectively. This case is equivalent to training the recognizer in
advance and having new users simply come in and use the system.
Each setting is repeated 200 times to compute the mean error rate.
Figure 2 Exp 2.1 and 2.2 show the recognition results of right-handed
and left-handed data.

The error rate exceeds 30% in the worst case (acceleration-only).
For the right-handed testing data, the best mean error rates for im-
plicit and explicit 6D motions are 14.76% and 6.49%. The confusion
matrix shows that the diagonal swiping gestures are noticeably am-
biguous. This is due to the fact that some of the subjects rendered
the diagonal swiping gestures close to their horizontal swiping mo-
tions; e.g., SwipeUpleft or SwipeDnleft is realized very close
to SwipeLeft. If we remove the four diagonal gestures, the best
mean error rates can be improved to 7.13% and 4.20%. In Figure 2
Exp 2.2, the steep drop of error rates of the explicit motion features
may have resulted from fewer left-handed testing samples.

The mean error rate of the user independent case is about 5 to
10 times higher than that of the user dependent case. In general, the
feature set of positions and orientations works best. The position-
only features are second, followed by the feature set of accelerations
and angular speeds. The acceleration-only feature performs worst.
Both smoothing and the temporal extension improve the recognition
rate, but the latter is more effective. We can further reduce the error
rate by integrating them together.

4.3. Verifying with Hoffman’s Data Set

It is interesting to compare the performance with different data set.
First, we try to reproduce Hoffman’s experiments with his own data
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and settings2, and the results confirm with the reported numbers in
[8]. Then, we run experiments on Hoffman’s data set with the same
setup in Section 4.2. Hoffman’s data set only records the motion
gestures using accelerometers and gyroscope in the Wii Remote and
Motion Plus. His gesture set originally has 25 gestures performed
by 12 right-handed and 5 left-handed users. We have to exclude the
“mirror” gestures that are opposite between right-handed and left-
handed users: TennisSwing, GolfSwing, Parry, Lasso, and
Spike. We randomly select five right-handed users to train the clas-
sifier, and then perform recognition on the gestures of the remaining
7 right-handed users and 5 left-handed users respectively. Figure 2
Exp 3.1 and 3.2 show the results of right-handed and left-handed
gestures.

We prove that both smoothing and the temporal extension are
still effective, although the reduction in the error rate is less than that
in our data set. We run the statistical hypothesis test on left-handed
and right-handed results of the implicit 6D gestures. It supports that
the mean error rates are significantly different (p < 0.05 for both
Exp 2 and 3). Based on both 6DMG and Hoffman’s data sets, we
postulate that the right-handed and left-handed gestures are different
to a certain degree even with the same gesture definition. However,
we need more left-handed motion data to prove this speculation.

5. CONCLUSION

In this work, we first introduce 6DMG, a motion gesture database
of both implicit and explicit 6D motion information of 20 distinct
gestures. Hoffman’s statistical feature set is used as our baseline.
We extend it from accelerations and angular speeds to positions and
orientations. We also propose two techniques to improve the recog-
nition accuracy: smoothing and the temporal extension. Smoothing
works as a low-pass filter to combat with the noisy data from our
inertial sensors. The temporal extension compensates the shortcom-
ings of the statistical features that take no account of the time series
nature of motions. After extracting the features, the linear classi-
fier is used to recognize the motion gestures. We examine both user
dependent and user independent recognition configurations.

Based on our results, the real positions provide much better ac-
curacy than the accelerations. The motion gestures are mainly about

2We would like to thank Michael Hoffman for sharing his motion gesture
data set and the loader program.

spatial trajectories, but the rotational information can provide sup-
plementary cues to further boost the recognition rate. Both smooth-
ing and the temporal information improve the recognition perfor-
mance, but the latter is more effective. Even with the same gesture
definition, the difference in right-handed and left-handed motions
matters for the gesture recognition. We show that the temporal infor-
mation is crucial for motion gesture recognition. A more thorough
time series analysis on motion gestures is needed. In the future, we
hope to further improve the recognition accuracy and replace the
push-to-gesture scheme with automatic gesture spotting.
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