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Abstract— In this paper, we consider distributed estimation in
energy-limited wireless sensor networks from lifetime-distortion
perspective, where the goal is to maximize the network lifetime
for a given distortion requirement. To take into account both local
quantization and multi-hop transmission, which are essential to
save transmission energy and thus prolong the network lifetime,
the network lifetime maximization problem is formulated as a
nonlinear programming (NLP) problem, where there are three
factors needed to be optimized jointly: (i) source coding at each
sensor, (ii) source throughput of each sensor, and (iii) multi-hop
routing path. Furthermore, we show that this NLP problem can
be decoupled without loss of optimality and reformulated as a
linear programming (LP) problem. The proposed algorithm is
optimal and the simulation results show that a significant gain
is achieved by the proposed algorithm compared with heuristic
methods.

I. INTRODUCTION

A common goal of most applications, such as environment
monitoring, battlefield surveillance, and health care, in wire-
less sensor networks (WSN) is to reconstruct the underlying
physical phenomenon, e.g., temperature, based on sensor mea-
surements. Distributed estimation of unknown deterministic
parameters by a set of distributed sensor nodes and a fusion
center has become an important topic in signal processing
research for wireless sensor networks [1], where sensor nodes
collect real-valued data, perform a local data compression, and
send the resulting messages to the fusion center, while the
fusion center combines the received messages to produce a
final estimation of the observed parameter.

Subject to the resource (bandwidth and energy) limita-
tion nature of wireless sensor networks, several bandwidth-
constrained distributed estimation algorithms [2]–[5] have
been investigated recently. In [2], a class of maximum likeli-
hood estimators (MLE) was proposed to attain a variance that
is close to the clairvoyant estimator when the observations
are quantized to one bit. Without the knowledge of noise
distribution, the work of [3] and [4] proposed several universal
(pdf-unaware) decentralized estimation systems based on best
linear unbiased estimation (BLUE) rule. In [5], quasi-optimal
distributed parameter estimation algorithms are proposed to
minimize the estimation mean square error (MSE) under
a total rate constraint. Also, the minimal-energy distributed
estimation problem has been recently considered in [6]–[9].
In [6], [7], the total sensor transmission energy is minimized
by selecting the optimal quantization levels while meeting
the target estimation MSE requirements. The work of [8]

provided a solution to minimal-energy distributed estimation
by exploiting long-term noise variance statistics. by exploiting
long-term noise variance statistics. The work of [9] proposed
quasi-optimal distributed parameter estimation algorithms to
minimize the estimation mean square error (MSE) under a
given allowable energy budget for all sensors.

All the aforementioned algorithms address distributed es-
timation from either rate-distortion perspective or energy-
distortion perspective. To the best of our knowledge, network
lifetime issue for estimation application in wireless sensor
networks has not yet been addressed explicitly in the literature.
In this paper, we study the lifetime-distortion issue for estima-
tion application in energy-limited sensor networks. In energy-
limited wireless sensor networks, both local quantization and
multi-hop transmission are essential to save transmission en-
ergy and thus prolong the network lifetime. To maximize
the network lifetime for estimation application, three factors
are needed to be optimized together: (i) source coding, i.e.,
quantization level of each observation, (ii) source throughput,
i.e. total number of observations or total information bits
generated by each sensor, and (iii) multi-hop routing path to
transmit the observations from all sensors to the fusion center.
This problem can be formulated as a nonlinear programming
(NLP) problem. Fortunately, source coding optimization can
be decoupled from source throughput and multi-hop routing
optimization and solved by introducing a concept of equivalent
1-bit MSE function. Based on optimal source coding, the
source throughput and multi-hop routing path optimization can
be formulated as a linear programming (LP) problem, which
is easy to solve.

The rest of the paper is organized as follows. Section II in-
troduces the system model. Section III formulates the network
lifetime maximization problem as a nonlinear programming
(NLP) problem, and then decouples the original problem into
two sub-problems without compromising the optimality. Then
in Section IV and section V, we solve the two sub-problems,
i.e., (i) source coding optimization, and (ii) joint source
throughput and multi-hop routing optimization, respectively.
Section VI gives some simulation results that demonstrate the
efficiency of the proposed algorithms. Finally, conclusions are
given in Section VII.

II. SYSTEM MODEL

We consider a dense sensor network including N distributed
sensor nodes and a fusion center, denoted as node N + 1, to
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observe and estimate an unknown parameter θ.

A. Estimation Model

First, each sensor k can make observations on the unknown
parameter θ, which are corrupted by additive noise and de-
scribed by

xk = θ + nk, k = 1, · · · , N, (1)

where the observation noises of all sensors nk are assumed to
be zero mean, spatially uncorrelated with variance σ2

k, while
the noise at each sensor is assumed to be temporally i.i.d
distributed, otherwise unknown.

Subject to severe bandwidth and energy limitations, each
sensor is prevented from transmitting real-valued (analogy)
data to the fusion center, that is to say, a local quantization
mk = Qk(xk) is performed before transmission, where
Qk(xk) is a quantization function. Assume there are K
observations (m1,m2, · · · ,mK) available at the fusion center,
fusion center produces a final estimation of θ by combining
all the available observations using a fusion function f : θ̄ =
f(m1,m2, · · · ,mK).

Assume the observation signal is bounded, i.e., xk ∈
[−W,W ], we adapt a probabilistic quantization scheme [6]
at each sensor to make the local quantization, as well as
a quasi-BLUE estimation scheme at the fusion center to
make the final estimation. Suppose all the observations of K
active sensors xk(k = 1, · · · ,K) are quantized into bk-bits
discrete messages mk(bk) respectively with the probabilistic
quantization scheme, then the variance of the quantized mes-
sage E(mk(bk) − θ)2 ≤ σ2

k + δ2
k(bk) := π2

k(σ2
k, bk), where

δ2
k(bk) = W 2/

(
2bk − 1

)2
denotes the upper bound of the

quantization noise variance. The quasi-BLUE estimator based
on the quantized message has the following form:

θ̄ =

(
K∑

k=1

1
π2

k(σ2
k, bk)

)−1 K∑
k=1

mk

π2
k(σ2

k, bk)
. (2)

Notice that θ̄ is an unbiased estimator of θ since every mk

is unbiased, and the estimation MSE of the quasi-BLUE
estimator is

E(θ̄ − θ)2 ≤
(

K∑
k=1

1
π2

k(σ2
k, bk)

)−1

. (3)

B. Energy Model

Assume sensor nodes can adjust their transmission power
to control the transmission range. The energy consumed by
sensor i to reliably transmit a b-bit message to sensor j is

e(b) = c · b · dα
i,j , (4)

where c is a system constant denoting the energy required by
transmitter amplifier to transmit 1-bit to one meter, α is the
path loss exponent depending on the medium properties, and
di,j is the distance between sensor i and sensor j.

III. NETWORK LIFETIME FOR ESTIMATION

Network lifetime is a critical concern in the design of
wireless sensor networks. In this section, we first define the
network lifetime and then formulate the network lifetime
maximization problem.

A. Function-based Network Lifetime

In the literature, many lifetime definitions are used, such
as, duration of time until the first sensor failure due to battery
depletion, fraction of surviving nodes in a network, and mean
expiration time etc. Instead, in this paper, we introduce a
notion of function-based network lifetime, which focuses on
whether the network can perform a given task instead of
whether any individual sensor is dead.

Definition 1 (Function-based Network Lifetime) For esti-
mation application, the network is considered functional if it
can produce an estimation satisfying a distortion requirement
Dr, otherwise it is nonfunctional. The network lifetime L is
defined as the estimation task cycles accomplished before the
network becomes nonfunctional.

At different estimation cycles, the parameter θ is assumed
to be unrelated, and the estimation at each cycle is performed
independently using only the observations made by all sensors
in the given estimation cycle. Based on the system model in
Section II, assume a sensor network with N sensors, each with
observation noise variance σ2

k (k = 1, · · · , N). To satisfy the
given estimation distortion requirement Dr, at each estimation
cycle, a subset of the sensors is required to observe the
parameter θ and transmit their quantized measurements to the
fusion center to make the final estimation.

Proposition 1 Assume sensor k (k = 1, · · · , N) can make a
total of Mk measurements and quantize its measurements us-
ing probabilistic quantization scheme to bk,i (i = 1, · · · ,Mk)
bits, respectively, before it depletes. Then the function-based
network lifetime L for estimation application is bounded as
follows:

L ≤ Dr

(
N∑

k=1

Mk∑
i=1

1
π2

k(σ2
k, bk,i)

)
, (5)

where, N , σ2
k, Mk, bk,i, Dr and π2

k(σ2
k, bk,i) are defined as

before.

Proof: Assume the network lifetime for this network
is L. At each estimation cycle l ∈ [1, L], denote the subset
of observations each sensor k makes and sends to the fusion
center is Ok,l . Then for any sensor k ∈ [1, N ], we have

Ok,i ∩ Ok,j = ∅, ∀i, j ∈ [1, L], and i �= j,
L⋃

l=1

Ok,l ⊆ {1, · · · ,Mk}, (6)

and for any estimation cycle l ∈ [1, L], we have⎛
⎝ N∑

k=1

∑
i∈Ok,l

1
π2

k(σ2
k, bk,i)

⎞
⎠

−1

≤ Dr. (7)

2



So,
L∑

l=1

N∑
k=1

∑
i∈Ok,l

1
π2

k(σ2
k, bk,i)

≥ L

Dr
, (8)

i.e.,
N∑

k=1

Mk∑
i=1

1
π2

k(σ2
k, bk,i)

≥ L

Dr
, (9)

therefore,

L ≤ Dr

(
N∑

k=1

Mk∑
i=1

1
π2

k(σ2
k, bk,i)

)
. (10)

Based on the system model and the definition of function-
based network lifetime, the objective of this paper is to
maximize the function-based network lifetime bound shown
in Eq. (5) under the energy resource constraint of each sensor.

B. Nonlinear programming (NLP) Formulation

Model the wireless sensor network as a directed graph
G(V,E), where V is the set consisting of all the N sensor
nodes and the fusion center (node N +1), i.e., V = [1, N +1],
E is the set of directed links in the network. An edge (i, j) ∈
E iff di,j ≤ R, where di,j is the distance between node i and
node j, and R is the maximum transmission range. The link
cost, denoted as Ci,j , to transmit a unit bit information from
node i to node j depends on the distance di,j between them
based on the energy model used in Eq. (4) as follows:

Ci,j =

{
cdα

i,j , if di,j ≤ R

+∞, otherwise
(11)

Assume each sensor has a limited energy supply Pk (k =
1, · · · , N), according to network lifetime bound shwon in
Eq. (5), the network lifetime maximization problem can be
formulated as a nonlinear programming (NLP) problem as
follows:

maximize Dr

(
N∑

k=1

Mk∑
i=1

1
π2

k(σ2
k,bk,i)

)
(12)

subject to

N∑
i=1,i �=k

fi,k + Sk =
N+1∑

j=1,j �=k

fk,j , ∀k ∈ [1, N ] (13)

N+1∑
j=1,j �=k

fk,jCk,j � Pk, ∀k ∈ [1, N ] (14)

Sk =
Mk∑
i=1

bk,i, ∀k ∈ [1, N ] (15)

where

Sk ≥ 0,Mk ≥ 0, ∀k ∈ [1, N ]
bk,i ≥ 0, ∀k ∈ [1, N ], i ∈ [1,Mk]
fi,j ≥ 0, ∀i ∈ [1, N ], j ∈ [1, N + 1]

(16)

Sk denotes the source throughput of sensor node k, i.e., the
total amount of data generated at sensor node k. fi,j denotes

the amount of data transmitted from sensor node i to sensor
node j. Eq. (13) and Eq. (14) represent two constraints of the
optimization problem: (i) flow conservation, i.e., the amount
of data transmitted by a sensor node is equal to the sum of the
amount of data received by the sensor node and the amount
of data generated by the sensor node itself, and (ii) energy
constraint, i.e., the amount of data transmitted by a sensor
node is limited by the energy supply of the sensor node.

C. Separation of Source Coding with Routing

To maximize the objective function in Eq. (12), there are
three factors needed to be optimized together: (i) source
coding at each sensor, i.e., quantization level bk,i for each
observation i of each sensor k, (ii) source throughput Sk

of each sensor k, and (iii) multi-hop routing path, i.e., the
feasible network flow f . Fortunately, it is easy to see that given
source throughput Sk, the source coding optimization can be
decoupled from the multi-hop routing optimization since the
objective function in Eq. (12) only depends on the source
throughput and source coding, but does not depend on how
the source data is transmitted to the fusion center. Therefore,
we can optimize the original problem stated in Eq. (12, 13, 14,
15) in two steps without loss of optimality: (i) optimizing the
source coding for given source throughput, and (ii) optimizing
the source throughput and multi-hop routing path jointly, based
on the optimal source coding.

IV. SOURCE CODING OPTIMIZATION

In this section, we optimize the source coding for a given
source throughput Sk of each sensor k ∈ [1, N ]. Mathemati-
cally, the problem is formulated as follows:

max Dr

(
N∑

k=1

Mk∑
i=1

1
π2

k(σ2
k,bk,i)

)

s.t.
Mk∑
i=1

bk,i = Sk, ∀k ∈ [1, N ],
(17)

where, Mk ≥ 0 and bk,i ≥ 0 defined as before are variables
to be optimized.

A. Equivalent 1-bit MSE Function

To facilitate the solution to Eq. (17), we first introduce a
concept of equivalent 1-bit MSE function.

Definition 2 (Equivalent 1-bit MSE Function) For a quan-
tized message from a sensor with observation noise variance
σ2 and quantization bit rate b, the estimation variance bound
is π2(σ2, b) := σ2 + W 2

(2b−1)2
as shown in Section II-A. Then,

the equivalent 1-bit MSE function is defined as

g(σ2, b) := b · π2(σ2, b) = b ·
(

σ2 +
W 2

(2b − 1)2

)
. (18)

With this definition, a b-bit quantization sensor with estimation
MSE π2(σ2, b) is equivalent to b equivalent 1-bit sensors, each
with the same estimation MSE g(σ2, b). That is why g(σ2, b)
is called equivalent 1-bit MSE function.

It is easy to show that g(σ2, b) is convex over b > 0. Then,
we further define the optimal 1-bit MSE function gopt(σ2)

3



and the corresponding optimal quantization bit rate bopt(σ2)
as follows:

bopt(σ2) = arg min
b∈Z+

g(σ2, b),

gopt(σ2) = min
b∈Z+

g(σ2, b) = g(σ2, bopt(σ2)),
(19)

where the minimization involves just a simple one-dimensional
numerical search. Note that b ∈ Z

+ in Eq. (19) since the
quantization bit rate must be integer in practice.

B. Upper Bound of Network Lifetime

Based on the definitions above, the network lifetime bound
for estimation can be reformulated as a linear function of the
source throughput Sk (k = 1, · · · , N ) as shown in Theorem 1
below.

Theorem 1 Given the source throughput Sk of all sensor
nodes k ∈ [1, N ] and the estimation distortion requirement
Dr, the bound of function-based network lifetime for estima-
tion is

L ≤ Dr

(
N∑

k=1

Sk

gopt
k (σ2

k)

)
, (20)

where, gopt
k (σ2

k) is the optimal 1-bit MSE function of sensor
node k.

Proof: Assume sensor k ∈ [1, N ] makes a total of Mk

measurements, each with quantization bit rate bk,i, respec-
tively, such that

∑Mk

i=1 bk,i ≤ Sk. Then as shown in Eq. (5),
the network lifetime bound is

L ≤ Dr

(
N∑

k=1

Mk∑
i=1

1
π2

k(σ2
k, bk,i)

)
. (21)

According to the definition of g(σ2, b) and gopt(σ2) in Eq. (18,
19) and the source throughput constraints in Eq. (17),

L ≤ Dr

(
N∑

k=1

Mk∑
i=1

1
π2

k(σ2
k,bk,i)

)

= Dr

(
N∑

k=1

Mk∑
i=1

bk,i

gk(σ2
k,bk,i)

)

≤ Dr

(
N∑

k=1

Mk∑
i=1

bk,i

gopt
k (σ2

k)

)

≤ Dr

(
N∑

k=1

Sk

gopt
k (σ2

k)

)
(22)

thus, the theorem is proved.
Note that the equality in Eq. (22) is achieved when each

sensor node adopts optimal source coding, i.e., optimal quan-
tization bit rate bopt(σ2) to quantize its observations. As shown
before, the optimal quantization bit rate bopt(σ2) of each
sensor can be easily obtained by minimizing its equivalent 1-
bit MSE function, which only depends on its own observation
noise variance, therefore, this optimization can be done in a
completely distributed manner.

V. JOINT OPTIMIZATION OF SOURCE THROUGHPUT AND

MULTI-HOP ROUTING

As shown in Eq. (20) in Theorem 1, the network lifetime
bound depends on the source throughput Sk for all sensors
k ∈ [1, N ], which are unknown variables to be optimized.
In multi-hop wireless sensor networks, each sensor not only
transmits the data generated by itself, but also relays the data
for other sensors. Since the total amount of data each sensor
can transmit and relay is limited by the energy supply of the
sensor node, the source throughput of each sensor and the
multi-hop routing need to be optimized jointly.

A. Linear Programming (LP) Formulation

As shown in Theorem 1, the nonlinear objective function
in Eq. (12) can be reformulated as a linear function of the
source throughput Sk (k ∈ [1, N ]) by the optimal source cod-
ing, then, the original network lifetime bound maximization
problem shown in Section III-B can be reformulated as a linear
programming (LP) problem as follows:

maximize Dr

(
N∑

k=1

Sk

gopt
k (σ2

k)

)
(23)

subject to

N∑
i=1,i �=k

fi,k + Sk =
N+1∑

j=1,j �=k

fk,j , ∀k ∈ [1, N ] (24)

N+1∑
j=1,j �=k

fk,jCk,j � Pk, ∀k ∈ [1, N ] (25)

where

Sk ≥ 0, ∀k ∈ [1, N ]
fi,j ≥ 0, ∀i ∈ [1, N ], j ∈ [1, N + 1] (26)

and all variables are defined as before.
In summary, the network lifetime bound maximization for

estimation can be formulated as a linear programming problem
as shown in Eq. (23, 24, 25), which can be easily solved using
any LP solver, such as [10] used in our simulations.

B. Special Case: Homogeneous Networks

In homogeneous wireless sensor networks, where each sen-
sor has the same observation noise variance, i.e., σ2

k = σ2 (k =
1, · · · , N ), single-hop routing path, i.e., all sensors transmit
their observations to the fusion center directly, can maximize
the network lifetime bound as shown in Proposition 2 below.

Proposition 2 In a homogeneous wireless sensor network
with N sensor nodes and observation noise variance σ2,
the optimal routing solution to network lifetime maximization
problem shown in Eq. (23, 24, 25) is single-hop routing.
Further more, assume sensor k (k = 1, · · · , N ) has Pk

amount of energy supply, then the network lifetime bound for
estimation with distortion requirement Dr is

L ≤ Dr

(
N∑

k=1

Pk

Ck,N+1·gopt(σ2)

)
, (27)
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where, Ck,N+1 is the link cost defined as in Eq. (11).

Proof: We prove it by contradiction. In the optimal flow
and routing solution for the network lifetime maximization
problem stated in Eq. (23, 24, 25) for homogeneous wireless
sensor networks, assume there is a multi-hop sub flow η with
data volume S, generated at sensor i0 and transmitted to the
fusion center through sensors i1, · · · , iT sequentially, i.e.,

Sη
i0

= fη
i0,i1

= fη
i1,i2

= · · · = fη
iT−1,iT

= fη
iT ,N+1 = S (28)

then, remove this multi-hop sub flow η and add a serial of
single-hop sub flow ξ0, · · · , ξT as follows:

Sξt

it
= fξt

it,N+1 =
Cit,it+1
Cit,N+1

· S, ∀t ∈ [0, T − 1]

SξT

iT
= fξT

iT ,N+1 = S.
(29)

First, it is easy to show that both the flow conservation
and energy constraints as shown in Eq. (24, 25) are satisfied
by removing the sub flow η and adding the new sub flows
ξ0, · · · , ξT .

Next, denote φ0 and φ1 are the objective function divided
by Dr before or after removing the sub flow η and adding the
new sub flows ξ0, · · · , ξT , i.e.,

φ0 = 1
gopt(σ2)

N∑
k=1

Sk,

φ1 = 1
gopt(σ2)

(
N∑

k=1,k �=i0,iT

Sk + (Si0 − S) + (SiT
+ S)

)

+ 1
gopt(σ2)

T−1∑
t=0

Cit,it+1
Cit,N+1

· S,

(30)
then,

φ1 − φ0 =
1

gopt(σ2)

T−1∑
t=0

Cit,it+1

Cit,N+1
· S ≥ 0, (31)

where, the equality holds only when the fusion center is not
in the transmission range of all sensors i0, · · · , iT−1, i.e.,
Cit,N+1 = ∞ for all t ∈ [0, T − 1], otherwise, φ1 − φ0 >
0. It means that for homogeneous networks with unlimited
transmission range for each sensor, single-hop routing can
achieve better performance than multi-hop routing, while for
homogeneous networks with limited transmission range for
each sensor, single-hop routing can achieve at least as good
performance as multi-hop routing.

In single-hop wireless sensor network, each sensor transmits
all its measurements to the fusion center directly, and no
energy is used to relay other sensors’ data, thus the maximum
source throughput of each sensor node is easily obtained
as Sk = Pk/Ck,N+1. Therefore, according to Theorem 1,
the network lifetime bound for estimation in a homogeneous

network is L ≤ Dr

(
N∑

k=1

Pk

Ck,N+1·gopt(σ2)

)
.

VI. SIMULATION RESULTS

In homogeneous sensor networks, the network lifetime for
estimation is maximized by optimal source coding and single-
hop routing as shown in Proposition 2, while in heteroge-
neous sensor networks, the network lifetime for estimation
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Fig. 1. Ratio of network lifetime bound for homogeneous sensor networks
under different SNRs and estimation MSE requirements.

is maximized by joint optimal source coding and multi-
hop routing. To demonstrate the performances of the optimal
coding scheme proposed in Section IV and the optimal routing
scheme in Section V, we simulate a homogeneous sensor
network and a heterogeneous sensor network, respectively.

A. Homogeneous Sensor Networks

In this section, we simulate a homogeneous sensor network
with N = 500 sensors, where the noise variance σ2

k, the initial
energy supply Pk, and the distance to the fusion center dk for
any sensor k is the same. Without loss of generality, we assume
the range of the observation signal is [−1, 1], i.e., W = 1,
and path loss exponent α = 2 (free space). Define the signal
to noise ratio (SNR) as SNR = 10 log10(W 2/σ2). In order
to demonstrate the efficiency of the proposed optimal source
coding scheme, we compare the proposed algorithm with a
heuristic method, where each sensor uses the same amount of
energy at each estimation task period.

Denote the estimation MSE of clairvoyant estimator as

D0 =
(∑N

k=1(1/σ2
k)
)−1

and define the normalized estima-

tion MSE requirement as Dn = Dr/D0. Fig. 1 shows the
ratio of network lifetime bound achieved by the proposed
algorithm to that by the heuristic method under different SNRs
and different normalized estimation MSE requirements. From
Fig. 1, we can see that a significant gain is achieved by the
proposed algorithm compared with heuristic method.

B. Heterogeneous Sensor Networks

In this section, we simulate a heterogeneous sensor network
with N sensors, where the observation noise variance of each
sensor is assumed to be

σ2
k = β + γzk, k = 1, · · · , N, (32)

where β models the network-wide noise variance threshold, γ
controls the underlying variation from sensor to sensor, and
zk ∼ χ2

1 is a Chi-Square distributed random variable with one
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degree of freedom. It is noted the network is homogeneous
for the special case of γ = 0. In the experiments, we assume
β = 0.01 and γ = 0.00, 0.05, 0.10, 0.15, or 0.20. Assume
all sensors are independently and uniformly distributed in a
rectangular region of [−5, 5,−5, 5], and the fusion center is
located at the central point of the region, i.e., (0, 0). And the
initial energy is still assumed to be the same for all sensors.
Assume the estimation MSE requirement is Dr = 5D0. To
demonstrate the efficiency of the proposed algorithms, we
compare it with two heuristic methods: (i) Heuristic-I: single-
hop routing with uniform energy scheduling for each sensor,
and (ii) Heuristic-II: single-hop routing with optimal source
coding and energy scheduling.

Fig. 2(a) and Fig. 2(b) show the ratio of network lifetime
bound achieved by the proposed algorithm to that by the
Heuristic-I and Heuristic-II methods under different total
number of sensors and different sensor noise variation param-
eters γ, respectively. From Fig. 2(a) and Fig. 2(b), we can
see that the proposed algorithms improve the network life-
time bound significantly compared with both Heuristic-I and
Heuristic-II methods. It is noted that both the optimal method
and the Heuristic-II method use optimal source coding, and
the only difference is that optimal multi-hop routing is used by
the optimal solution, while single-hop routing is used by the
Heuristic-II method. From Fig. 2(b), we see that the Heuristic-
II method is also optimal when γ = 0.00, which confirms our
conclusion in Proposition 2 that single-hop routing maximizes
the network lifetime bound for homogeneous networks. From
Fig. 2(b), we also can see that optimal multi-hop routing im-
proves the network lifetime bound significantly compared with
single-hop routing for heterogeneous networks. Furthermore,
the gain is more significant when the network is denser since
there are more opportunities for multi-hop routing, also the
gain is more significant when the observation noise variances
are more diverse, i.e., γ becomes bigger.

VII. CONCLUSIONS

In this paper, we consider the lifetime-distortion issue
for estimation in multi-hop wireless sensor networks. First,
a notion of function-based network lifetime is introduced,
based on which the network lifetime maximization problem
is formulated as a nonlinear programming (NLP) problem,
then the NLP problem is decoupled into a source coding
optimization problem and a linear programming (LP) problem
for routing optimization, which are solved respectively.
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