A Hybrid Spatio-Frequency Approach for Delineating Subsurface Structures in Seismic Volumes
Yazeed Alaudah, Muhammad Amir Shafiq, and Ghassan AlRegib
{alaudah, amirshafiq, alregib}@gatech.edu

Abstract

Frequency-based edge detection methods such as phase congruency [1] are generally fast and accurate but are sensitive to noise, and cannot capture subtle edges that are marked by a change in texture rather than a change in amplitude. On the other hand, spatial edge detection methods such as Canny Edge Detector [2] are generally fast and accurate but are sensitive to noise, and cannot capture subtle edges that are marked by a change in texture rather than a change in amplitude. In this paper, we share a new hybrid spatio-frequency edge detection method, and show its effectiveness in salt dome delineation on seismic data from the North Sea F3 Block [7].

Motivation

- Seismic surveys results in huge amounts of data. For example, a survey of an 50x30 sq. Km area results in about 600 TB of data.
- Manual interpretation and analysis of the data is very time consuming and labor intensive.
- There is increasing interest in automated seismic interpretation tools and algorithms.
- Salt domes are important geological structures spanning over several kilometers under the Earth surface.
- Salt domes are impermeable and thus can potentially trap large quantities of hydrocarbon reservoirs.
- Accurate localization and delineation of salt domes is one of the important steps in seismic data interpretation.

Background:

- **GoT**
- **PC**

Proposed Method

Phase Congruency

PC defines the congruency of the Fourier components of edges in an image. PC varies between 0 and 1, corresponding to no and perfect phase congruency. PC is superior to gradient-based edge detection methods since it is a dimensionless quantity that is not affected by changes in image illumination and contrast.

\[
P_C^*(x) = \frac{E(x)}{\sum_\Delta E_\Delta(x)} \
\]

where \(E(x)\) is sensitive to noise.

\[
PC[x,y] = \sum_{\omega} \sum_{n} W_n(\omega) A_{n,\phi}(\omega) \left(\Delta \Phi_{n,\phi}(\omega) - \Phi_{n,\phi}(\omega) \right) = \sum_{\omega} \sum_{n} A_{n,\phi}(\omega) + \epsilon
\]

\(A_{n,\phi}(\omega)\) : amplitude and phase of Fourier components at different spatial frequencies and orientations \(\Phi_{n,\phi}(\omega)\) : phase deviation \(\epsilon\) : estimated noise influence at each orientation

- **Gradient of Texture (GoT)**

\[
G(x,y) = \left(\sum_{\omega} \sum_{n} W_n(\omega) A_{n,\phi}(\omega) \left(\Delta \Phi_{n,\phi}(\omega) - \Phi_{n,\phi}(\omega) \right) \right)^2
\]

\(F(x,y) = \frac{1}{2\pi} \sum_{\omega} \sum_{n} f(x,y) e^{i \omega x} e^{i \phi(x,y)} \)

\(F(x,y)\) is a perceptual dissimilarity measure based on double DFT.

Results

We compute the results for delineating salt domes on the real seismic dataset acquired from the Netherlands offshore, F3 block in the North Sea by dGB Earth Sciences [7]. The seismic volume that contains the salt dome structure has an inline number ranging from #151 to #501, a crossline number ranging from #401 to #701, and a time direction ranging from 1,300ms to 3,848ms sampled every 4ms. We objectively compare the results using SALTIM introduced by Wang et al. [6].

Salt Dome Similarity: $\text{SALTIM}(A, B) = \gamma - \frac{\Delta}{\gamma}$

\(\gamma\) : local term
\(\Delta\) : global term

References

Acknowledgments

The authors would like to acknowledge the support of the Center for Energy and Geo Processing at Georgia Tech and King Fahd University of Petroleum and Minerals (KFUPM) for supporting this work.

Natural vs. Texture Images

| Spatial: GoT | Frequency: PC | Hybrid: Proposed |

Seismic Data

- Salt Domes
- Motivation

Results

- Salt Dome Delamination
- Setup

Seismic Data

- Salt Domes are important geological structures spanning over several kilometers under the Earth surface.
- Salt domes are impermeable and thus can potentially trap large quantities of hydrocarbon reservoirs.
- Accurate localization and delineation of salt domes is one of the important steps in seismic data interpretation.

Proposed Method

- **Phase Congruency**
- **Gradient of Texture (GoT)**

References

Acknowledgments

The authors would like to acknowledge the support of the Center for Energy and Geo Processing at Georgia Tech and King Fahd University of Petroleum and Minerals (KFUPM) for supporting this work.