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SUMMARY

Reservoir characterization involves the estimation petrophysi-
cal properties from well-log data and seismic data. Estimating
such properties is a challenging task due to the non-linearity
and heterogeneity of the subsurface. Various attempts have
been made to estimate petrophysical properties using machine
learning techniques such as feed-forward neural networks and
support vector regression (SVR). Recent advances in machine
learning have shown promising results for recurrent neural net-
works (RNN) in modeling complex sequential data such as
videos and speech signals. In this work, we propose an al-
gorithm for property estimation from seismic data using recur-
rent neural networks. An applications of the proposed work-
flow to estimate density and p-wave impedance using seismic
data shows promising results compared to feed-forward neural
networks.

INTRODUCTION

Reservoir characterization (RC) is the process of estimating
petrophysical properties of the subsurface using information
obtained from well-log, core, and seismic data. The goal of RC
is to estimate petrophysical properties such as porosity, density
and permeability at any location and depth in a reservoir. RC is
a complex process due to the non-linearity and heterogeneity
of the subsurface. There is no clear mapping from seismic
data to well-logs, and even if such mapping exists it might not
generalize well beyond the study area.

Simply stated, the RC problem is finding a functional approx-
imation from seismic data to well-log data so that log data
can be generalized beyond well location to the entire reser-
voir area. From a machine learning perspective, the goal is to
train an estimation model on the sparsely available well-logs
and their corresponding seismic data (as illustrated in Figure
1) such that it can estimate one or several well-logs proper-
ties at a given location and depth/time using seismic data at
the same location. Then, the model can be used to generate a
property volume for the entire reservoir area.
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Figure 1: An illustration of the integration of well log data and
seismic data in a survey area.

Although this problem might seem to be a perfect setup for re-
gression algorithms such as support vector regression (SVR),
decision trees, and feed-forward neural networks, there are
many challenges that prevent such algorithms to find a proper
mapping that can be generalized for an entire survey area. One
of the challenges is the lack of data from a given survey area
on which a model can be trained, as we are limited to the num-
ber of drilled wells in an area. For this reason, such regression
algorithms need to have a limited number of parameters and a
good regularization mechanism in order to prevent over-fitting
and to be able to generalize beyond the training data. In addi-
tion, there are two common methods to model the problem so
that regression algorithms can be used. The first method is to
treat each data point in a well-log (in depth) as an independent
sample and try to estimate its value from the corresponding
seismic data sample(s). This method fails to capture the tem-
poral dynamics of well-log data that is the dependency of a
data point at a given depth on the data points before it and af-
ter it. An alternative approach is to estimate the entire well-log
at once from the corresponding seismic data to incorporate the
temporal dependency (in depth/time) of petrophysical proper-
ties. However, this approach severely limits the amount of data
from which the algorithm can learn; because each well-log in
this scheme is treated as a single training sample. With a lim-
ited amount of data samples, common machine learning algo-
rithms will fail to generalize beyond the training data. Fur-
thermore, seismic data are captured at lower resolution than
that of well-log data which make this problem even more dif-
ficult. In order to remedy this issue, a data preprocessing step
is required before attempting to train any machine learning al-
gorithms (Chaki et al., 2018).

Several attempts have been made using machine learning and
statistical learning tools such as artificial neural networks, and
support vector regression to solve the RC problem (Al-Anazi
and Gates, 2012; Chaki et al., 2015; Gholami and Ansari, 2017;
Chaki et al., 2017). The literature shows great promise for ma-
chine learning algorithms for property estimation. However,
most regression algorithms treat data samples independently
such that a prediction is made solely from the input data with
no influence from the outputs from data points before or after
the target point. Well-log data exhibit inter-log correlations,
such that logs may follow certain intrinsic patterns due to con-
sistency in lithology in a given study area. Furthermore, well-
logs also exhibit inter-log (temporal) correlations, i.e. correla-
tions between property samples for a given depth range. In this
study, we propose the use of recurrent neural networks (RNNs)
to capture the aforementioned correlations of wells logs in a
given survey area by modeling well-log data as sequences (in
depth/time). The proposed workflow is trained and validated
using well-logs and their corresponding seismic data from the
Netherlands offshore F3 block.



FEED-FORWARD AND RECURRENT NETWORKS

Despite the success of feed-forward neural networks for var-
ious learning tasks, they have their limitations. Feed-forward
neural networks have an underlying assumption that data points
are independent and thus the internal state of the networks is
cleared after a data sample is processed which would be fine,
unless data is not independent which is the case for sequential
data.

Recurrent neural networks are a class of artificial neural net-
works that can capture temporal dynamics of sequential data
like time series, audio and video. Unlike feed-forward neu-
ral networks, RNNs have a hidden state that can be passed
between sequence samples which serves as memory allow-
ing them to capture very long temporal dependencies in se-
quential data. RNNs have often been utilized to solve many
problems in language modeling and natural language process-
ing (NLP)(Mikolov et al., 2010), speech and audio processing
(Graves et al., 2013), and video processing (Ma et al., 2017).

A single layer feed-forward neural network produces an out-
put yi which is a weighted sum of input features xi followed
by an activation function (a non-linearity) like the sigmoid or
hyperbolic tangent functions, i.e. yi = σ (Wxi +b) where xi
and yi are the input and output feature vectors of the ith sam-
ple, respectively, σ(·) is the activation function, W and b are
the learnable weights matrix and bias vector, respectively. The
same equation is applied for all data samples independently to
produce outputs.

In addition to the affine transformation and non-linearity, RNNs
introduce a hidden state variable that is computed using the
current input and the hidden state variable from the previous
step,

h(t)
i = σ

(
Wxhx(t)i +Whhh(t−1)

i +bh

)
,

y(t)i = σ

(
Whyh(t)

i +by

) (1)

where x(t)i , y(t)i and h(t)
i , are the input, output, and state vectors

at time step t, respectively, W’s and b’s are network weights,
and bias vectors respectively. For time t = 0, the hidden state
variable is set to h(0) = 0. Figure 2 shows a side-by-side com-
parison between a feed-forward unit and a recurrent unit.
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Figure 2: An illustration of feed-forward and recurrent net-
works.

When RNNs were first proposed in 1980s, they were hard
to train because they introduced a dependency between data
samples which made the gradients more difficult to compute.

Additionally, they have more parameters to learn compared to
feed-forward networks. The problem was solved using back-
propagation through time (BPTT) algorithms (Werbos, 1990),
which turns gradients into a long product of terms using the
chain rule. Theoretically, RNNs are supposed to learn long-
term dependencies from their hidden state variable. However,
even with BPTT, RNNs failed to learn long-term dependencies
mainly because the gradients tend to either vanish or explode
for long sequences as they were backpropagated through time.

New RNN architectures with more sophisticated activation func-
tions have been proposed to overcome the issue of vanishing
gradients using gated units. Examples of such architectures are
Long Short-Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) and the recently proposed Gated Recurrent Units
(GRU) (Cho et al., 2014). Such architectures have been shown
to capture long-term dependency and perform well for various
tasks such as machine translation and speech recognition. In
this paper, we utilize GRUs in our proposed model to enhance
the estimation of petrophysical properties from seismic data.

Gated Recurrent Units

GRUs supplement the simple RNN described above by incor-
porating a reset-gate and an update-gate variables which are
internal states that are used to evaluate the long-term depen-
dency and keep information from previous times only if they
are needed. The forward step through a GRU is given by the
following equations,

u(t)
i = sigmoid

(
Wxux(t)i +Whuh(t−1)

i +bz

)
r(t)i = sigmoid

(
Wxrx(t)i +Whrh(t−1)

i +br

)
ĥ(t)

i = tanh
(

Wxĥx(t)i +bĥ1
+ r(t)i ◦

(
Whĥh(t−1)

i +bĥ2

))
h(t)

i = (1−u(t))◦h(t−1)
i +u(t) ◦ ĥ(t)

(2)

where z(t)i and r(t)i are the update-gate, and reset-gate vectors,

respectively, ŷ(t)i is the candidate output, W’s and b’s are the
learnable parameters, and ◦ is the element-wise product. Note
that in addition to the output state, the GRU introduces two
new state variables, update-gate u and reset-gate r, which con-
trol the flow of information from one time step to another, and
thus they are able to capture long-term dependency. Figure 3
shows an example of a GRU network unfolded through time.
Note that all GRU’s in an unfolded network share the same
parameters.
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Figure 3: Gated Recurrent Unit (GRU) unfolded through time.



METHOD

Data Preprocessing
Well-logs are acquired at a much higher vertical resolution
than seismic attributes which requires a preprocessing step in
order to successfully train an estimation model and guarantee
its convergence. One approach to preprocessing the data is
to regularize the logs by smoothing such that both the logs and
seismic attributes have comparable information content (Chaki
et al., 2018). This is done by filtering log data with a low-pass
filter to match frequency content of seismic data. This step re-
duces the variation of log data in a small time window so that
the model can capture the overall trend of logs rather than the
small high frequency variations. Furthermore, the data sam-
ples are normalized such that each log trace has a zero mean
and a unit standard deviation which is a common step before
training a machine learning model.

Proposed Model
In order to capture the inter- and intra- log correlations as well
as to establish a functional approximation from seismic to log
data, we propose a simple 2-layer recurrent neural network,
namely a GRU, followed by a linear regression layer. As we
have discussed above, outputs of the GRU are a function of
an affine transform of the inputs plus bias, which can be seen
as feed-forward network by itself. In addition, it utilizes the
update-gate and reset-gate variables to improve the network’s
outputs at a given time step based on the networks previous
states. The proposed workflow is shown in Figure 4.
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Figure 4: The proposed workflow with 2 layer GRU and a
regression layer.

For a given well log, a seismic cube is extracted around the
well location to be used as an input to train the model. The
seismic cube is of size p× p× T where p is the number of
seismic traces in the inline and crossline directions, and T is
the number of samples in a trace. Let xi ∈Rp×p×T be the seis-
mic cube at location i, and yi be the log trace at the same loca-
tion. The model processes the data sequentially (in time) such
that it inputs the seismic slice at time t, x(t)i ∈ Rp×p, and the

state variables of both GRUs at time t−1, h̃1(t−1)
i and h̃2(t−1)

i ,
in order to compute the output state variables at time t. The
regression layer then takes h̃2(t)i and computes the estimated

property at time t, ỹ(t)i . If the sample to be predicted is the first
sample in the log (t = 0), state variables are set to zero. The
process is then repeated to estimate the entire property trace.
During the training of the model, when all the N logs in the

training dataset have been estimated as ỹi,∀i = 1, . . . ,N, they
are compared to the measured log yi,∀i = 1, . . . ,N using Mean
Squared Error (MSE) loss function. The error is then used to
compute the gradients and to correct the model’s parameters
using BPTT.

After proper training, the model’s performance is assessed on
the validation dataset by computing the Pearson correlation co-
efficient between the estimated logs and the measured logs.
The Pearson correlation coefficient is computed as,

ρ =

∑
t

(
y(t)i −ȳ

)(
ȳ(t)i − ¯̃y

)
√√√√∑

t
(y(t)−ȳi)

2
∑

t

(
ỹ(t)i − ¯̃yi

)2
. (3)

EXPERIMENTAL EVALUATION

The dataset contains 4 wells, F021, F032, F034, and F061

from the Netherlands offshore F3 block. For each of the wells,
we extracted a seismic cube of 7×7 traces centered at the well
(p = 7 as in Figure 1). The proposed workflow is then trained
using seismic cubes as inputs and a single property log from
the well-log data. In our experiments, we trained two identical
networks, one to estimate density and the other to estimate p-
wave impedance, both of the networks are similar to the one
shown in Figure 4.

Due to the small size of the dataset, training regularization is
needed to ensure that the model does not over-fit to the training
data. One such technique is early stopping in which the train-
ing is stopped after a small number of epochs. More training
epochs will definitely improve the performance of the model
on the training dataset, but the model will fail to generalize.
In addition, we used data augmentation by using multiple ro-
tations of the seismic cubes along the time axis to increase the
number of the training samples.

The model in Figure 4 with a 2 layer, 32-feature hidden state
variable GRU was tested on the dataset described above. In ad-
dition, the same dataset was used to train a 2-layer, 32-neuron
feed-forward neural network. The performance of the mod-
els is then assessed using 4-fold validation, where three of the
wells are used for training and the remaining well is used for
testing. The process is repeated 4 times, and the results are
averaged for all experiments. The results are summarized in
Table 1. The results show that even with a small dataset, the
recurrent neural network can estimate log data from seismic
data with much higher correlation than the feed-forward net-
work. Note that the feed-forward network was not able to train
properly on such a small dataset.

Feed-forward Recurrent
Property Training Validation Training Validation

P impedance 0.48 0.37 0.96 0.72
Density 0.42 0.31 0.97 0.70

Table 1: Correlation coefficient between estimated and mea-
sured properties.



Figure 5 shows a scatter plot of the measured density and the
estimated density using the proposed workflow for training
and validation datasets. We can see that the estimated den-
sity varies almost linearly with respect to the measured den-
sity. Figure 6 shows examples of estimated density logs using
the proposed workflow.

t is worth noting that a problem as difficult as property estima-
tion might need a more complex and deeper learning model;
however, the number of model parameters increase with com-
plexity and thus much more data is required to train such mod-
els properly. The goal of this experiment was to show the
power of recurrent neural networks for property estimation by
utilizing their temporal dependencies, compared to the feed-
forward neural networks which treat data samples indepen-
dently.
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Figure 5: Scatter plots of measured density and estimated den-
sity from the training and validation datasets.
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Figure 6: An example of measured density and estimated den-
sity logs from the training and validation datasets.

CONCLUSIONS

In this paper, we proposed a machine learning algorithm for
well-log property estimation from seismic data using recurrent
neural networks. The proposed workflow was validated using
4-fold validation for density and p-wave impedance estimation
from seismic data. Although the training was carried out on a
small dataset, the validation results indicate a great potential of
recurrent neural networks for reservoir characterization. With
a larger dataset for training, the model could be used to gener-
ate property volumes for a survey area from seismic data.
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